

GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW) CHEMISTRY - UNIT 1 2410U10-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	Question	Marking dataila			Marks a	vailable		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1.		8	1			1		
2.		Group 2			1	1		
3.		3s 3p 3d 4s neon core 11 11 11 1 1 1 1 1 1 1	1			1		
4.	(a)	$PCI_5 + 4H_2O \rightarrow H_3PO_4 + 5HCI$		1		1		
	(b)	$M_{\rm r}$ H ₃ PO ₄ = 98(.03) and either $M_{\rm r}$ HCI = 36.5(1) or $M_{\rm r}$ PCI ₅ = 208.5 and $M_{\rm r}$ H ₂ O = 18(.02) (1) atom economy = 35 % (1) ecf possible from part (a)		2		2	1	
5.	(a)	ability to attract electrons in a covalent bond / a shared electron pair	1			1		
	(b)	increase in number of protons / charge on the nucleus	1			1		
6.	(a)	$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$	1			1		
	(b)	silver nitrate solution / AgNO ₃ (aq) gives cream/off-white precipitate	1			1		1
		Section A total	6	3	1	10	1	1

Section B

	Oue	stion	Marking dataila	Marks available					
	Que	Stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7.	(a)	(i)	van der Waals forces are stronger in iodine than in chlorine / more van der Waals forces in iodine than in chlorine (1)						
			iodine has more electrons than chlorine (1)						
			therefore more energy needed to overcome forces / higher melting temperature (1)						
				3			3		
		(ii)	aluminium has more valence electrons than sodium therefore stronger metallic bonds	1			1		
		(iii)	silicon has a giant molecular structure, phosphorus only has weak forces between the molecules	1			1		
	(b)		nitrogen is higher since it only has unpaired 2p electrons, O has two unpaired and two paired 2p electrons / N 1s² 2s² 2p³, O 1s² 2s² 2p⁴ (1)						
			repulsion between paired electrons makes it easier to remove one of the electrons / takes more energy to remove unpaired electron (1)	2			2		
	(c)		percentage abundance 121 = 57%, 123 = 43% (1) accept 121 = 28.5, 123 = 21.5 if divided by 50 in calculation						
			relative atomic mass = 121.9 (1)		2		2	2	

	Question		Manking dataile				Marks a	vailable		
			Marking details		AO1	AO2	AO3	Total	Maths 2	Prac
	(d)		 90 Sr and ²²⁸Th not suitable because half-life is too remain in the body for a long time (1) 210 At and ²²⁸Th not suitable because α-radiation i /causes most damage in the body (1) 							
			⁹⁹ Tc suitable because short half-life and γ-radiati body (1)	on does not stay in			3	3		
				Question 7 total	7	2	3	12	2	0

	Ques	tion	Marking dataila			Marks a	available		
	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8.	(a)	(i)	furthest line to the left	1			1		
		(ii)	electron falls from higher energy levels to lower energy levels / to n = 2 (1)						
			the difference between any two energy levels is fixed / energy levels are quantised (1)	2			2		
	(b)	(i)	this is the energy required to remove an electron from an atom of hydrogen / for an electron to go from $n=1$ to $n=\infty$ (1)						
			in the gaseous state (1)	2			2		
			[award (1) for correct equation with state symbols but no explanation]						
		(ii)	E = hf (1)	1					
			$f = 2.18 \times 10^{-18} / 6.63 \times 10^{-34}$ (1)						
			$f = 3.29 \times 10^{15} \tag{1}$		2		3	3	
	(c)		$V_2 = \frac{163 \times 273}{398} = 112 \tag{1}$						
			n hydrazine = 112/22400 = 0.00500 (1)		2			2	
			$M_{\rm r}$ hydrazine = 0.160/0.005 = 32 so molecular formula is N ₂ H ₄ (1)			1	3		
			ecf possible						
			credit alternative method using pV = nRT						

0	Questi	ion		Marking details			Marks a	vailable		
<u> </u>	xuesii	IOII		Marking details	AO1	AO2	AO3	Total	Maths	Prac
	(d)	(i)	Н	× N · N · H H H						
			shared	pair of electrons between N atoms (1)						
			rest of e	electrons correct (1)		2		2		
			accept	all electrons represented as dots/crosses						
		(ii)		lent bond where the electrons are not shared equally en the atoms / unequal electron density	1			1		
((e)		N ₂ H ₄ +	$H_2O \rightleftharpoons N_2H_5^+ + OH^-$		1		1		
			accept							
			N ₂ H ₄ +	$2H_2O \;\; \rightleftharpoons \;\; N_2H_6^{\;2+} + 2OH^-$						
				Question 8 total	7	7	1	15	5	0

	0	4!	Manhin a statella	Marks available					
	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
9.	(a)		$\frac{0.001}{0.500} \times 100 = 0.20 \%$		2		2	1	2
			award (1) if one error made e.g. failure to convert mg to g						
	(b)	(i)	it is the number of moles of ascorbic acid used that is important / concentration of acid is not important			1	1		1
		(ii)	heated to ensure that all the acid / the tablet dissolved		1		1		1
	(c)		total volume of titres = $26.73 \times 3 = 80.20 \text{ cm}^3$ / third titre is 26.80 cm^3 (1)		1				
			so final reading must be 27.00 cm ³ (1) do not accept 26.99 cm ³			1	2	2	2
	(d)		volume of sodium hydroxide added would be less (1) since fewer moles of acid present / calculated mass of acid in tablet would be less (1) award (2) for volume NaOH added more since OH groups in ascorbic acid oxidised to acid		1	1	2		2
	(e)		moles NaOH = $2.67(3) \times 10^{-3}$ which is equal to moles acid (1) mass acid = 0.4704 g (1)						

Question			Marking details			Marks a	vailable		
Quesi	.1011		Marking details	A01	AO2	AO3	Total	Maths Pra	Prac
(f) (i) $[H^+] = 0.02$ (f)			$[H^{+}] = 0.02$ (1)						
			pH = 1.7 (1)		2		2	2	
			award (1) for pH = 2						
	(ii)		oxidation state Mn changes from IV to II therefore it is reduced (1)						
			oxidation state CI changes from -1 to 0 therefore it is oxidised (1)		2		2		
			Question 9 total	0	12	3	15	7	8

	Ques	lion	Marking details Marks available						
	Ques	lion		AO1	AO2	AO3	Total	Maths	Prac
10.	(a)	(i)	$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$ (1) $K_{c} = 0.119$ (1)					1	
			$dm^6 mol^{-2} (1)$		3			1	
			student is correct since K _c < 1 / very small (1)			1	4		
		(ii)	student incorrect since equilibrium shifts to left (1)			1			
			system opposes change by taking in heat, favouring endothermic direction (1)	1			2		
	(b)		$n(NH_3) = 58720$ (1)					1	
			n(DAP) = 22020 (1)					1	
			maximum mass DAP = 2909 (1)		3		3		
	(c)		pV = nRT (1) $V = 2.54 \times 10^{-3} \times 8.31 \times 393$ (1)	1				1	
			101000					1	
			$V = 8.21 \times 10^{-5} \text{ m}^3 \tag{1}$					1	
			$V = 82.1 \text{ cm}^3$ (1)		3		4		
			credit alternative method using molar volume						
			Question 10 total	2	9	2	13	7	0

	0	·!	Maulium dataila			Marks a	available		Prac 6
	Quest	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
11.	. (a)	(i)	 Indicative content add acid (not sulfuric/hydrochloric) to prove if carbonate present if fizzing/effervescence carbonate present if carbonate present, add acid until no more fizzing divide solution into two (accept divide solution before adding acid) add barium chloride to one half precipitate shows that sulfate is present add siver nitrate to other half precipitate shows that chloride is present 	2	2	2	6		6
			5-6 marks Devises a plan with relevant observations and conclusions that unampresent. The candidate constructs a relevant, coherent and logically structured content. A sustained and substantiated line of reasoning is evident as accurately throughout. 3-4 marks Devises a plan with relevant observations and conclusions that show The candidate constructs a coherent account including most of the key evident in the linking of key points and use of scientific conventions and conclusions.	d method nd scienti s that two ey elemei	including fic conver o or three nts of the	all key ele ations and anions co indicative	ements of vocabula uld be pre content. S	the indica ry are used sent.	tive d
		1-2 marks Devises a simple plan with some observations and conclusions that shows that one of the anions countries to link at least two relevant points from the indicative content. Coherence is linclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions a							
			0 marks The candidate does not make any attempt or give an answer worthy of cred	lit.					

Ques	stion	Marking dotails	Marks available						
Ques	Stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
	(ii)	incorrect since other cations form soluble salts with these anions (1)			1				
		carry out flame test – if flame turns yellow cation is sodium (1)	1			2		1	
(b)	(i)	A is simple molecular (1) D is ionic (1)	2						
		B is probably giant molecular but could be ionic since not all ionic substances are soluble (1)							
		C is probably metallic but could be giant molecular (graphite) since graphite conducts electricity (1)			2	4			
	(ii)	B - use higher temperatures to melt the solid and test the molten substance for electrical conductance (1)			1				
		if B conducts then ionic / if B does not conduct then giant molecular (1)		1		2		2	
		OR							
		C - add acid (and warm) and see if effervescence forms (1)							
		if C effervesces then metal / if C does not effervesce then graphite (1)							
		credit sensible alternative physical tests e.g. hardness of ${\bf B}$, malleability of ${\bf C}$							
	(iii)	can be difficult to get powdered metal to conduct electricity / powdered metal not shiny / not sonorous / not malleable		1		1		1	
		Question 11 total	5	4	6	15	0	10	

UNIT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	6	3	1	10	1	1
7.	7	2	3	12	2	0
8.	7	7	1	15	5	0
9.	0	12	3	15	7	8
10.	2	9	2	13	7	0
11.	5	4	6	15	0	10
Totals	27	37	16	80	22	19